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-4' Virtually all social science students who have studied applied

r%- ,
..

CO '-. statistics have been introduced to the concepts and formulas orslinear

%CO
correlation of two variables. Applied statistics textbooks routinely

s

r--4

report the theoretical limits of the bivariate . correlation coefficient; tamely,

6.11.1 'that the coefficient is no' more than +1 and no less than 'HoWever,

no commonly used applied statistics textbook proves this. One of the

best textbooks available to students of education and psychology introdUces
o °

the'prOof (Glass and Stanley, 1970). UndoUbtedly, one of the constraints

o

placed on authors by publishers is space limitations available for detailed

explanations, derivations and proofs;

This paper will set forth in-detail a proof bf the limits of the sample

bivariate correlation coefficient. Since the proof requires only knowledge of
4 .\

algebra, most students of applied statistics at the advanced undeigraduate

, or introductory graduate'level should have little difficulty in under-

standing.the proof. As a former instructor of graduate level introductory

applied statistics; I know that the typical student can understand the

prodf as it is presented here.

The key fdr tinderstanding statistical proofs is a presentation

of detaile\d steps in -4 well articulated and coherent manner. A review-

1P4

of relevant statistical and mathematical concepts is also helpful ( and %

.
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'2.

' usually required). When students are presented in detail im-

portant statistical proofsithey feel that some of the mystery and magic

of mathematics has been unveiled. My experience has been that the typical

student of applied statistics can follow a good number of proofs becguse

most proofs can be presented algebraically without use of calculus. In addition to

enhancing knowledge, an occasional proof often increases academic 4

motivational
)

Some Preliminary Concepts

The proof requires knowledge of several concepts in statistics

X .

and mathematics. In order to make thispaPer self-contained, some

preliminary concepts stated in a consistent notation will be reviewed.

We will review the concepts and forMulas of standardiscores (z scores),

bivariate correlation formulas in unstandardized and standardized form,

and algebraic inequalities.

Notation and Basic Formulas

Table l'i§,a layout of symbolic values written in the notation

to'be used in this paper. The model presented in Table 1 is of two measures

in unstandardized (raw scorer and standardized (z score) form. Table 2

.presents some familiar formulas based on unstandardized variables that

will be useful'for the; development of the proof.

1ThisT paper is one of a series contemplated.for publication. [See
O'Brien, 1982]. Eventually ,I hope to present a textbook of applied /stat'
tics proofs and derivations to supplement standard applied statistics
textbooks.

61"

3



O

O

Table 1

. Table Layout for Two Measures in Unstandardized and Standardized Form

Measure X Measure Y

Unstandardizgd ',Standardized Unstandardized Standardized

(X -;) /S
Zx1 1 x (Y -Y)/S = Z

1 1 1
Y1

X
2

(X
2
-R)/S' =

x2

X
3

(X
3
rR)/S

x
Z
xr, 3

0

t*

JY ='i
2 Y

2

Y
3'

(Y
3

= Z
Y3

I

.x. (g.1-R1/S
x

= Z
. 1 x.

Yi (Yi-) /S = Z
1

Y yi
. .

-X
n

(X
n
-T) /S .=Z (Y = Z

x x
n
40 n Y

n'

'Sample
Size

Sample

, Mean

Sample
Variance

n
x

S
2

3c

n
zx

n
zY
Y,

E
x y

2 .,2*
8 S

2

Y
Y

' o,

r'.
, .

.

#.

.

-NOTE: all sample size terms are equa.1; th4t is: n
x

,1= n
z

= Ti
y
-= n

zy
:

1

.. . .x . .. .

Any of these sample size terms could be identified by,just.Che symbol -- such As
n. We' will use h when it is not important to disiinguish..kmong the other sample'
size terms, but will Ilse the table' values above when itis necessary or important

. to do so.
,,
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Table 2

Relevant Formulas for Unstandardized Measures

Measure X Measure -Y

n n
x Y

-4 E X E Y.

Sample X= 1 =1
X.

1=1 1
.

Mean .
0 4

n
X

Sum

nx

nxX = TX.
i=1

nx

Sample 2
S

i=1
1

Variance x n
x

nx

Sum of (n -1)S
2

= L....(Xi
Y Y

:X)
2,

. (n -1)S2 = ),__.

x x
(T.-(Y. -Y')-?

Squares , i=1 i=1 1

/ (

.

=

Y

n

n Y = E Y.

1=1
1

n

NOTES:
l , The sampleisize terms are equal:°n

x
=n
y
. Also n

x y
=n.=n4

.
,

..

manipulation2. ,"Sum"is simply-an algebraic anipulation of "Sample Mean"; i.e.,

multiply over the sample size°term in "Sample Mean" to get-"Sum".

Also,"Sum of Squares is such a manipulationbased on "-Sample

Variance".. "Sum" and "Sum of Squares"-will be useful later on.
. . 1 . -

-
.

3. Des criptive statistics for standardized scoret'will be

. developed in. the body".ol. the text.
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Standard Scores

It will be Kecalled that the standard score for an unstandardized
. .

'

measure (raw score) is "the score-minus the mean divided by the standard

deviation". For case 1 of measure X in Table 1 , the standard' -(z) score is:

\

For any (hypotheticall, case, 'the standard,score,of-an,X measure is

°.

x . x
1

Z =

; X . . S
X

, 1
1 . .

.The lame procedure can be applied to Ymeasurds..For case'l:
,

Y1

Y
1
-Y

y

0 0

Similarly, for the ith (hypothetical case),-we have:

Y-

.:

S
y

,Since a standard score distribupion (such as
.

.
.

distribution of variable measures., we can calculate means; standard deviations,
, - ., .

, .

. .

variances, correlations, and so forth, just as we can,calculate theSe-
. .

__

statistics for unstandardized measures.

in Table 11 is a

. 0-

a
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Most students will recall that the mean of z scores is equal to 0

6.

and.the standard deviation (and variance) of standardiZed scores is equal to 1.

(The proof of these statements is given in the Appendix
1

.)

The mean of X standardized scores is defined as:

Z
x

=

40k
Similarly, for Ymeasures:

i=i

z
xi

- 0 4 e ° k

z

n
2

0

The variance Of X in z score notation is defined as:

n

cz E ) 2
x

--.

x
11 2 1=1 1

4

P
z n -1

= 1

z
.

...

. x
4,

.
.. . 1

1Th'e Appendii Contains proof of certaimconcepts'or relationhips

. that miy be of interest to the reader but are not crucial for.the.development 16

.,of the proof in this Raper (the theoretical limits of the sample bivariate

correlation coefficient).
.

..
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For the standerdized,Y measure the variance is defined as:

4:0

n
z
Y

1E: (z -z 1
2

S
2

=
i=1 Yi Y

z nz -1

Sum of Squared Standard Scores.

-

To understand the proof it is necessary to know the result

of summing a distributiorkof squared standard scor4s. If we square
/.

7.

each, standard score for the X measurein Table 1 and sum them, we obtain:

11,

>..... Z2 = Z2 + Z
2

+
. . x

4
.
i=1 Xi" ,,,-. I -2

V
. ,

*
Z-2

n

If we substitute the appropriate means and variances in .the right hand side

of the expression, we obtain:.

0

,

'n
zx ------

2 . 2
0(
1
40 2 (X

2
-X). (X -X)

nE z2 . + +

.i.71 xi S
x

2 2

I

.r'

; .

S
2

x x



Since

C,

the S
2

is a qonstant, we can.factor it outside, and write:

'

8.

n ,
z
x ,
.. ,

,
'

.

z- .. .1 . (x
1
-x)

2
+ (x

2
-xr

2
+...+ (x

n.
)i)

!x4 2 I
1 =1 4'

. S,

. . ,.,) .e08

4 .

Rewriting the right hand -side in summation notation, we obtain:

h (X --co
z

2
1

x

x
k=1,

1: 2Zx S
2

i . x'
i=1

. .

From Table 2, we know that we can substitute the sum of squares term

into the numerator on'the right hand side. This results in:

4

(Recall that n -1 = n-1). *

If we were to work through the same steps for Y, we would obtain:

.5
t

(n Ll)S
2

x x

5 n x-1 = n71

S
2

k
-

(Recall that n 71 = n-1) .

,(n -1)S
Y

y

O

S
2

--.1a -1 =
,Y

41.

4
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Theu relationships between squared.z scores and sample size are very important'

,

for the proof 'later on. They will be summarized dater on for easy reference._.,

Correlation Formulas

Unstandardized Form . I

Using the notation'and variables in Tables 1 and 2, theiinstand dized

'form.corc,elation'for two measures(Vand Y) is defined as follows:

r
xy

n
1 E

i=1 1 3;
0;

-7 n n

-X)2

i=1
n -1
x

11=1

-ma.

n -1,
Y

6...1.

Note that the numerator contains the term n-1 because it is not important

9

or necessary to distinguish between n
x
-1 or n

y
-1. However, in the denom-,

inator it is helpful to distingpish nn -1 from n -1. In any case, all
Y

of the sample size terms would be equal, to the same numerical'value if5a,

,....serre/ation coefficient were computed on a set of data (n
x
-1 = -1 =n-1)

r

4 '

10
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Standardized Form

The correlation of measure,Xsand measure Y in standard score form

is defined as follows:

rzx`zY

1 1E: (Z --E )(Z )

x. x 17 . y
n-1 i=1

1

n .

zx
2E(Z )

x. x

i=1,

nz- -1x

z.

-Z
Y

)

2

Z

i=1

zy,

It is proven in the Appendix that this correlation formula is egdal to

rz z -1
x y

10.

Ia

n i
E.Z Z

x. .

d=1
171.

If we rearrangejthis formula y multiplying over the n-1 term,we obtain:

i

(n-1) r
z z
x y

-n

Z
x. , y .

i=1 "

This relationship will be useful in,the proof it will be restated for

easy reference later.

The reader may recall,that the same correlation coefficient results

when the variables are in raw score form or standard score form. That is:'

O
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C

r

.__

This statement is proven in the Appendix. W&will restate it prior to the . . ,

. .

proof for the readers convenience. ,

'C' ( .

.

ll:.
.

0

,Inequalities-
. ,

to

Before startlng the prOor it it necessaryto revie one eifurther

topic: algebraic inequalitiA. In the proof we are required to manip--

ulate form of inequality: the folm "gfeatek than- or eqUal to" and

-
Airless than,or equalto". An example will serve as a refresher.

.

For two variables, say A and B, we Can. write:

A > B

which means "A is-greater than or equal to B".

Equivalently, we can write,i,

,

B < A ',

'1

.

1

which means the same thing: "B is less than or, equal to A"!1-For example,. ,

3 ) 1 or equivalently 1 L 3.

All'of this m }e obvious. What students, sometimes forget is

what happenS when. multiplying or dividing by negative quantities. For

0

example, if 3 > 1, and we multiply this inequality by -1, we would obtain:
. ,

O

N.
J

=1( (3) (1)] = -3
/---

12
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4"

.

That is, the inequality sign is reversed. when multiplying by a negative number.

,

004:

The same result occurs for more cbmplex expressions. For example:
4

1 - A > B

Multiplying each side of the inequitS, by -1,we

Example:

-11(1-A) > (B)] = -(1-A) < B

1 1 4 > Q

-Multiplying through by we obtain:

6

A-1 < B

-1[ (1-1/4) (0)) = -(1-1/4) 0 347.1 < o

SummaryNof Important Concepts: ^:

a
We have reviewed standard scores(z), correlkion formulas and

algebrait inequalities. All of these concepts
4 are important to understand

(
the proof that follows. For the readers convenience, we will summarize

these concepts, for easy reference. This is done in Table 3.

7



Table 3

Summary of Important Condepts

n n
z z
x-

-z'
x

0

1
Y.

= n-1

1=1 1=1

r
xy, z z

x y

n . ,,
\

Z Z = (n-1) r ' = (n-1) r . \

1=1
. y .

1
z

x
z
y

xy N

o

I

(I-A) >. (B) < B

O

. t
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Proof

We are now ready to present the proof. Formally,,we want to pro've

C.

the following statements:

r -1
xy

r < +1
xy

.-011

writing each of the statements in one linear

C
-1 r +1

xy

form:

410t This states the same'information as the above two separate statements'.

The proof consists of two parts: one part shows the lower limit
4

A of r
xy

(i.e., r
xy

> -1),

of'r (i.e., e A +1).
xy

.
xy

Proof that r 4 +1
xy

o

and the second'part shows theupper limit

We will prove the'upp'er limit first.

g7

To prOve this limit, we sill perform algebraic manipulations

on a statement which-is mathematically true. That statement is:

n

Dz z. 1
2

Yixi
i=1

15

°o

14.



In,wdrds, the statement means:: the sum of squared differences of n

standardized value pairs will always be equal'to or greater than O. The

e, reader may refer to.Table 1 for clarification. The squared differences

are taken 17 each row (pairs) of and values starting at
fi Yi

Z Z
xl, yi and conti uing down ,to the last pair of Z's (Zx ,Z ).

n Yn

...44.

15.

Most students readily agree that the squared sum will be greater than O.

',
But can it ever be exactly equal to 0? Yes, theoretically it can. Refer-

4

.

ring to Table 1, if olle;imagines each standardized X and Y measure to have

0
1

the same numerical value, then it is apparent that each difference will be

0; so, the squared value of 0 is also O. Now, a sum of squared O's.

will itself be equal toi0. While it may be unlikely to occur in practice,

it is onlyreqUired that :,(Z )

1=1 xi Yi
0 be true in a mathematical

i

sense. Thus, the statement is true. We will expand this squared, sum,

perform algebiaic manipulations and substitutions, and arrive at the proof

for the upper limit of thesample correlation coefficient.

The actual steps in the derivation will now be presented. Notes

.pertaining to the algebra are provided for the readers reference. Refer,

to Tables 1,2 and 3 as needed. It is suggested that the reader first

examine the algebraic statement on the left side of the page. Then read the

comment on the right side for explanation. Seenext page.

1That is, within pairs, not all pairs. Example:

Y.

1.41 1.41

-.68 -.68
.05 .05

etc.

40.

ob



1.

AK.

a

Z(Z -Z ) . 0
2 ,

Y1

1=1'

;t(Z2
4

- 2Z Z ) > 0
1 x. y.

1=1 3. 3.

17

\ °

n n

2
+" Z-

x. Y1

1=1 1:4: 1=1

I

2 E
Z Z
x. y.
1 1

1=1

That r +1
xy

0

ti

Notes

yestatement
from before. Squaring

each term, we obtain an expansion of
thd binomial in this form:

(A-B.)
2

= A2 + B2 - 2AB ,

Distributing the summati& opel-ator
to 'each term, and, bringing g-the

constant 12)P outside the summation sign
co,

This next stet) is very important. We will
substitute three quantitiee,a,11 frdm

Table 3. They are:

n

2:Z2 = n-1
, x.

i=1 1

n

.1.Z2 n-1
Y

i=1
,

i=1

xZy = (n-1)r
z z

(n-1)
. .

3. 3. x y

.

3
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So

(n-1) (n-1)

2(.1-1)

2(n -1)r > 0
'xy

2.(n -1)r
xy

> 0

2(n-1)(17r ] > 0
xy

2(n-1)(1-rxy ]

2(n-1)'

(1-r ) 0
xy

0

2(n-1)

-1[(1-r
xy

) > 0] = r
xy

-1 0

r
xy

1 + 1

'+i
xy

0 +

Making the

Collecting, the

t

.FactOring the

Dividing each

2(n-1) which
equality s gn
positive b ca

Here we make
inequality' b

us multiply
by -1_(see Ta
the inequalit

Now, add :+1

This gives us

END OF PROOF

f"

ree substitutions

liice°tei-ms of (nr1)

A.

n-1).term

side of the inequality by
oes not change the in-,

as 2 (p-1). is always

se n mutt ,alwayS, be > 2

e

se of multiplying an
a negative number. Let

ch side of the inequality
le 3) which reverses
sign and reverses the 1-r

xy

to each side

OR. UPPER LIMIT.

'



Proof that r -1
xy

,Part two of the proof will be much simpler because the structure

18.

of of the proof is very much

true, namely:g.

follow the §ame basic steps. We start out with a statement that is mathe-

.

. ,

e the first part. We will

2: (z + z
y.

)2

1=1
x 'o

",

Again this statement is true in a mathematical senseeven through the
411;,'

.

"equals 0" aspect is very, unlikely to occur in statistical , practice.

0 The development of the proof with apprOpriate notes-begins on the

next page-

-

-1

4
0



,
,. n

Zx + Z )2

d Y

i=1

O

>

,010'
-41Nha .

r
xy

;..?

0

n

, Ez2
+° Z

2
+ 2Z Z )

x. . y.

i=1 1
Yi e

x.
1 1
/

2

i=1 1 i=1111

2(n-1)[1 + r ]

xy

p

+ 2 EZ Z , 0
x
i

y
i

Makingsthesame three substitutions

.' As in part one
/
we obtainer

0

>

(2,

4

Step ) restated. Squaring each term

results in a binomi4a1 expansion in
this form: 1

(A+B)
2

= A
2

+ B
2

+ 2AB

Distributing the summatiOn operator
. ,

. and bringing out the 2 ....

(n-1) t+ 2 (n-1) r
A xy

i
Adding like terms and factoring

0 Dividing each side by ;pi-1)

1 r .> 0 Adding. .41"4"'to.each side
xy r

1 i% .

1. + r -1 > 0 1 Simplifying
xy 0

r
xy

> -1 END OF PROOF FOR LOWER LIMIT

23
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,r

20.

.'..
,

...

_

We have just proven that 1 < r C +1. See the Appendix
,

'

for aclditional proofs of related material.

a

re

tit

o

,

ti
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.4APPENDIX

Selsiled'Proofs2

-

1: That the mean of standard scores is equal to 0.

We will start wi th the definition of the mean of z scores for
o

'4604
the X meature:'

. n
zx '

Z. 41i

Z =
1=1

Expanding the right sidel

x

21.

r

Fs

g.

6C

-
Z
x

Factoring the constant,

.

in summation notation:

.,,

=

S
x

1

4.

(X
1
-i) (X2-56

.

.- ____CX_n ri)----

..._

n_-
z -

x

outside

+ + ... +
S
x .

S
?(

S
x

/

.

amervwriting the sum of deviatiOns

n
x

1 ; (ni:X)
Zx

nz S
x
47
1=1

x

F

4
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e,

S

22
7

. '

Distributing the summation sign inside the parentheses :

S

1

z

Zx =
n. Sx

x-

n
x

Y. 0
n , n
x, , x

Since 1
in"")L =

v
, 1

n
x
X and '4,e sum of the constant, 4, Xlisequal to

X
X ,

X..-.1,.
i=1 ,t--..:

. - i=1 .

.. 0,"'
P,

t_

1.

1 1
. - (n X - n7()

Zx =
n-

---- x x =

z
S
x

.,

,

X

0

Thus the mean of Z
x

scores is equal to 0., Similar reasoning for the

Y measure will produce the same result, namely:

nz

Z

yi
Zy

i=1

n n1 S1

(n "Y. - n =
Y

zy .y

r

Therefore, variables in standardized form have mean equal to 0.

t

0,

1
Recall that when taking the sum of a c onstant (say C) we have:

n ..,0,
\
JE:c . c + c + c + ..1- c . ,nCL

. i=1 .

That is, the sum of 4i0brisiant is equal to the constant times the number
..---- ...,4.,

of terms added (in thts.case n).
, /

.
.

.
26
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2. -That the variance and standard deviation og standard scores is equal to 1.

By. definition, the variance fbr X meAsures in ,'standard score form is:

- 2 c

2::(Z - )

x. x

S
2 i=1

,z
x

n
zX

-1

Since we know that Z
x

=;0, we now have:

,

n1nz

x
*S---(Z )

2

1 , L___ x.S. '

2 1=1 1

., , .. z . nz -1
x',

x

If we rewrite 'Z
x.

1

deviation:

in terms ofunstandardized mean and standard

'T

n
x

. -

S
2

1
E

2
z
x

=
nz i=1 S

x

Rearranging terms:

n
x

2-' 1 1 14EDX -X)
2

S ='
z n

x
S2
x

-1
z i=1

f
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59

From Table 3, we can substitute. into the numerator of S
2

the "sup of
x

situares" for the X measure. This results in:

2
)

z

1 :(n
X
-1)(S

XS. =2 1

n -1 2
x z S

x x

Since nx = nz we can cancel terms,' leaving:'
x

2
S
z
x

Similar reasoning for Y standardized measures-will produce, as the next

to the last step in the derivation:

Since n = n
z
-Y'

4

S
2 1 1 (n -1) (S2)

Y 'Y

nzy

-1
S
2

,

Y

2
S
z

1

46.

In each case, the standard deviation for approp riate variance terms,

is simply the square root of 1. That iS!

,

n. Sz
2 Tr

z
= Sz =17-= 1 and S

z
. = S.

X x Y' ,- Y

=j1 = 1

.

Thtis the variance and standard deviaapn-of z scores equal to 1.

24.

i

. r .



1

.111140114,

a. 4

0 3. That r
xy

= rz
z

x y

25.

We want to show that when measures X and Y are converted to standard

scores and correlated, the resulting correlation is the same as the correla-

tion between the unstandardized (raw) measures of X and Y.Let us first

rewrite the correlation formula foY z scores:

r
z z
x y

n

,e 1 :E= (z E
x

(Z E )
. tex

Yi
y

n-1 i=1

2

x ^
i=1

n -1
z
x

Since Z
x

= Z = 0, we can simplify to get:

r
z z
x y

In the denominator,

nz

4i

n

1
(Zx ) (Z

y .

n-1 i=1
3. 3.

-am
z

-Z )

Y
i=1

n -1

, z

nz

(Z )

2

i=1
Y.

nz -1

Y4

we recognize. that'

(z )2 = n -1 and
i=1 'xi

z
x

Substituting these valu es, we obtain:



r.

26.

r
z z
x y

1.
S--(Z .)(Z )

x. y.

n-1 i=1

.nz)c-1 -1

n -1 n
z z
x Y

-1

The denominator cancels out completely leaving:

n

r
_ 1 , E Z Z

z
x
z
y

11-1 1=1 xi yi

(Recall that this relationship was used in the proof for the limits of r ).
xy

Nowo expanding the z score terms:

e r.--

, -
ncp (Xi -T)

(y.- 1-i)

1

'(S ) (S )

r
z z

= .4-
i=1n-1

x y x y

This is identical to :

1

n

1. i
RHY i)'

n-1 i=1

30
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27.

P

Recognizing that S2 = S
x

and \02 = S , we can write:

40P
'

(X -R).(Y.-i
1

)

n-1 1=1

(S
x

2
) (S

y

2
)

Rewriting the denominator of the variance product term in aw score

terms (see Table 2)':

. z z
x y

.4*

n ,

Em-X) -i)i .
n-1 i=1

r-
n
x

21(X. -X)
2

.
i=1

.... ...-

n
Y -

Y:
-Y)2

i=1
.

4

.....

n x-1

01/0. =mow.

. n

,110i46

This is precisely the fOrm for r that was defined earlier it the iapei.
xY

Therefore, the correlation ketween measures in rawrscore and z score

forms is identical.
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